An Efficient Task Assignment Mechanism for Crowdsensing Systems
نویسندگان
چکیده
Crowdsensing has attracted more and more attention in recent years, which can help companies or data demanders to collect large amounts of data efficiently and cheaply. In a crowdsensing system, the sensing tasks are divided into many small sub-tasks that can be easily accomplished by smartphone users, and the companies take advantage of the data collected by all the smartphone users to improve the quality of their services. Efficient task assignment mechanism design is very critical for crowdsensing under some realistic constraints. However, existing studies on task assignment issue are still have many limitations, such as most of them are failed to consider the time budget of smartphone users. Therefore, this work studies the optimal task assignment problem in crowdsensing systems, which can maximize the task completion rate with consideration of the time budget of users. We also prove that the optimal task assignment problem is NP-hard, thus we adopt the linear relaxation and greedy techniques to design a near-optimal crowdsensing task assignment mechanism. We also empirically evaluate our mechanism and show that the proposed task assignment mechanism is efficient.
منابع مشابه
An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملEMC3: Energy-Efficient Data Transfer in Mobile Crowdsensing under Full Coverage Constraint
This paper proposes a novel mobile crowdsensing (MCS) framework called EMC3, which intends to reduce energy consumption of individual user as well as all participants in data transfer caused by task assignment and data collection of MCS tasks, considering the user privacy issue, minimal number of task assignment requirement and sensing area coverage constraint. Specifically, EMC3 incorporates n...
متن کاملScalable and Cost-Effective Assignment of Mobile Crowdsensing Tasks Based on Profiling Trends and Prediction: The ParticipAct Living Lab Experience
Nowadays, sensor-rich smartphones potentially enable the harvesting of huge amounts of valuable sensing data in urban environments, by opportunistically involving citizens to play the role of mobile virtual sensors to cover Smart City areas of interest. This paper proposes an in-depth study of the challenging technical issues related to the efficient assignment of Mobile Crowd Sensing (MCS) dat...
متن کاملHybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کامل